Heaps and two exponential structures
نویسندگان
چکیده
منابع مشابه
Heaps and Data Structures: A Challenge for Automated Provers
Software verification is one of the most prominent application areas for automatic reasoning systems, but their potential improvement is limited by shortage of good benchmarks. Current benchmarks are usually large but shallow, require decision procedures, or have soundness problems. In contrast, we propose a family of benchmarks in first-order logic with equality which is scalable, relatively s...
متن کاملShellability of Exponential Structures
We show that the poset of aB partitions of an nd-set with block size divisible by d is shellable. Using similar techniques, it also follows that various other examples of exponential structures cited by Stanley are also shellable. The method used involves the notion of recursive atom orderings introduced by Bjorner and Wachs. AMS (MOS) subject classifications (1984). Primary: 06AlO; secondary: ...
متن کاملExponential Dowling structures
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures l...
متن کاملBinomial Heaps and Skew Binomial Heaps
We implement and prove correct binomial heaps and skew binomial heaps. Both are data-structures for priority queues. While binomial heaps have logarithmic findMin, deleteMin, insert, and meld operations, skew binomial heaps have constant time findMin, insert, and meld operations, and only the deleteMin-operation is logarithmic. This is achieved by using skew links to avoid cascading linking on ...
متن کاملExponential Time Algorithms - Structures, Measures, and Bounds
This thesis studies exponential time algorithms, more precisely, algorithms exactly solving problems for which no polynomial time algorithm is known and likely to exist. Interested in worst–case upper bounds on the running times, several known techniques to design and analyze such algorithms are surveyed. A detailed presentation of the design and especially the analysis of branching algorithms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2016
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2015.12.007